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a b s t r a c t

The scattering of light by dielectric particles much larger than the wavelength of

incident light is attributed to diffraction, external reflection and outgoing refracted

waves. This paper focuses on diffraction and external reflection by faceted particles,

which can be calculated semi-analytically based on physical optics. Three approximate

methods; the surface-integral method (SIM), the volume-integral method (VIM), and

the diffraction plus reflection pattern from ray optics (DPR) are compared. Four

elements of the amplitude scattering matrix in the SIM and the VIM are presented in an

explicit form. Of interest is that diffraction and external reflection are separable in the

SIM, whereas they are combined in the VIM. A feature of zero forward reflection is

noticed in the SIM. The applicability of the DPR method is restricted to particles with

random orientations. In the manner of van de Hulst, we develop a new technique to

compute the reflection pattern of randomly oriented convex particles using spheres

with the same refractive index, resulting in an improvement in the precision of the

reflection calculation in near-forward and near-backward directions. The accuracy of

the aforementioned three methods is investigated by comparing their results with those

from the discrete-dipole-approximation (DDA) method for hexagonal particles at the

refractive index of 1.3+i1.0. For particles with fixed orientations, it is found that the SIM

and the VIM are comparable in accuracy and applicable when the size parameter is on

the order of 20. The ray-spreading effect on the phase function is evident from the

results of various size parameters. For randomly oriented particles, the DPR is more

efficient than the SIM and the VIM.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the context of physical optics, the scattering of light
by dielectric particles much larger than the wavelength of
the incident light is attributed to three components:
diffraction, external reflection, and outgoing refracted
waves [1,2]. Traditionally, the ray-tracing technique,
based on geometric optics, is used to compute the electric
fields associated with reflected and refracted rays, and the
ll rights reserved.
Fraunhofer diffraction theory is employed to account for the
wave nature of light [3–7]. The conventional geometric
optics method (CGOM) is conceptually simple but is only
valid for particles where the size parameter w is much
greater than 20 (w=2pd/l, where d is the characteristic
dimension of the particle and l is the wavelength). To
improve the accuracy of the CGOM, especially for
moderate sized particles (w�50), several methods of
combining exact electromagnetic integral equations and
geometric optics have been developed in [8–10]. In these
methods, the near field is approximated in terms of the
solution from the geometric optics method, and the far
field in the radiation zone is obtained by mapping the
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near field via either a surface-integral [8,9] or a volume-
integral equation [10]. However, this exact transformation
procedure has been demonstrated to be computationally
ineffective, particularly for randomly oriented particles.
To overcome the computational difficulty, Yang and Liou
proposed a simplified mapping technique that incorpo-
rates the so-called ray spreading effect into the phase
matrix simulated from the CGOM [9], a polarized diffrac-
tion matrix to replace the scalar Fraunhofer diffraction
[11], and a ray-by-ray algorithm to calculate the efficiency
factors [10]. This simplified approach (hereafter, the
improved geometric optics method, IGOM), has been used
to solve the single-scattering properties of randomly
oriented ice crystals and dust aerosols in the atmosphere
[12–17]. For particles that have parallel planar faces, such
as a hexagonal plate or column, the delta-transmission
term [18–19] in the phase function was removed. The
basic IGOM formalism was reported by Yang and Liou
[20]. Note that there are also other modifications of the
geometric optics method. Borovoi and Grishin [21]
discussed the method of tracing the plane-parallel out-
going beams instead of rays in the near-field simulations
of hexagonal ice crystals. A method that combines the ray
tracing calculation and the concept of energy flow lines to
model the diffraction effect was reported by Hess et al.
[22], Clarke et al. [23], and Hess [24].

The intent of this study is to investigate the efficiency
and accuracy of the calculations of diffraction and
external reflection for faceted particles such as those
found in ice clouds. The calculation of external reflection
from faceted particles is quite different from that of
spherical particles with smooth surfaces. In the case of
spheres, the agreement between the external reflection
pattern calculated from geometric rays and that from
zero-order Debye series [25] or from the Lorenz–Mie
theory for strong absorbing particles is excellent at larger
scattering angles [26]. A detailed treatment of the
diffraction and external reflection associated with an
arbitrarily oriented spheroid was discussed by Lock [27].
For a faceted particle, singularity points exist in the
reflection pattern when the particle is at a fixed orienta-
tion in the context of ray optics. Therefore, ray optics is
normally applied to randomly oriented faceted particles.

Specifically, we intend to show that the first-order
scattering for faceted particles can be derived semi-
analytically from a surface-integral equation [9] or a
volume-integral equation [26]. This is the main reason
why diffraction and external reflection of light are
investigated separately from the refracted waves. In [9]
and [26], an amplitude scattering matrix is represented as
a product of several matrices in conjunction with some
local coordinate systems. Four elements in the amplitude
scattering matrix can be derived explicitly as functions
of the direction of the incident light, the normal direction
of local surface and the refractive index. Although the
surface-integral and volume-integral transformations of
the near field to the far field are equivalent, the formulae
associated with diffraction and external reflection derived
from the two integral equations are not exactly the same.
To our best knowledge, this feature has not been
investigated in previous studies and a comparison of the
accuracy of the two methods has not been reported in the
literature.

Furthermore, we notice that the traditional method of
using the shadow diffraction theory and the ray-tracing
technique to calculate the diffraction and reflection by
randomly oriented particles can be improved. van de
Hulst [1] suggests that the normalized reflection pattern
for randomly oriented convex particles should be the
same as that for spheres with the same surface conditions.
Therefore, the reflection pattern for a sphere can be used
to replace that calculated for general convex particles.
This treatment will remove the difficulty in determining
the scattered energy within the solid angle elements near
the forward and backward directions.

The accuracy of the aforementioned three methods can
be examined in the cases of highly absorptive particles by
employing exact numerical scattering methods, such as
the finite-difference time domain (FDTD) method [28–30],
the discrete dipole approximation (DDA) method [31–34],
and the T-matrix method [35–38]. In principle, the
diffraction and external reflection cannot be separated
from the complete solution in the exact numerical
methods. In practice, we assume that the contribution to
the scattering phase matrix from the refracted waves can
be neglected for highly absorbing particles. Therefore, it is
possible to determine the accuracy of the first-order
scattering solution, and to develop the most accurate and
efficient numerical algorithm for the IGOM.

The remainder of this paper is organized as follows.
Section 2 describes three feasible methods for calculating
the diffraction and external reflection: the surface integral
method (SIM), the volume integral method (VIM), and the
method of diffraction plus external reflection from ray
optics (DPR). In Section 3, we compare the phase functions
simulated from these methods for hexagonal particles.
The accuracy of these methods is examined in comparison
with their counterparts from the DDA method for
hexagonal particles with strong absorption. The conclu-
sions of this study are given in Section 4.

2. Computational methods

2.1. Surface integral method

The electric field in the radiation zone can be
formulated in terms of the Kirchhoff surface integral over
the near field [9,39] as follows:

E
*s

ð r
*
Þjkr-1 ¼

expðikrÞ

�ikr

k2

4p r̂ � a
s
fn̂s � E

*

ð r
*
0Þ

�r̂ � ½n̂s � H
*

ð r
*
0Þ�gexpð�ikr̂ � r

*
0Þd2 r

*
0; ð1Þ

where k is the wave number, r̂ is the scattering direction
to observation position, s is the particle surface or any
surface which encloses the particle and n̂s is the outward
pointing unit vector normal to the surface s. E

*

and H
*

can
be either the scattered field or the total field on the
surface. Note that the integral in Eq. (1) is a linear
operator with respect to the electric and magnetic fields.
Therefore, the contribution of external reflection to the far
field can be calculated separately by mapping the
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reflected field on the illuminated side of the particle. The
contribution from diffraction can be computed by map-
ping the incident field on the illuminated side or minus
the incident field on the unilluminated side of the particle.

The amplitude scattering matrix can be written as the
sum of two parts:

S¼ SrþSd; ð2Þ

where Sd and Sr are the 2�2 amplitude scattering matrix
associated with diffraction and external reflection, re-
spectively. For a local planar surface, the sum of Sd and Sr

can be written as

S¼Dð ~S
r
þ ~S

d
Þ; ð3Þ

where D is an integral over the local surface, given by

D¼
k2

4p

Z
s

exp ikðê
i
�r̂Þ � r

*
0

n o
d2 r

*
0: ð4Þ

In Eq. (4), ê
i

is the direction of incident wave. The
expressions of four elements of ~Sd and ~Sr in Eq. (3) can be
explicitly obtained as follows:

~S
d

11 ¼ ð1þcosyÞcosyi�siny sinyi sinf0; ð5Þ

~S
d

12 ¼ siny sinyi cosf0; ð6Þ

~S
d

21 ¼�
~S

d

12; ð7Þ

~S
d

22 ¼
~S

d

11; ð8Þ

~S
r

11 ¼ ð1�cosyÞcosyið�Ra sin2 f0þRb cos2 f0Þ�Ra siny sinyi sinf0;

ð9Þ

~S
r

12 ¼ ð1�cosyÞcosyiðRaþRbÞsinf0 cosf0þRa siny sinyi cosf0;

ð10Þ

~S
r

21 ¼�ð1�cosyÞcosyiðRaþRbÞsinf0 cosf0�Rb sin y sinyi cosf0;

ð11Þ
Fig. 1. Illustration of coordinate systems associated with reflection. (a) The loca

in order that the Fresnel coefficients can be employed to calculate the reflected

plane. (b) y is the scattering angle, f is the azimuthal angle of scattering plane
~S
r

22 ¼ ð1�cosyÞcosyiðRa cos2 f0�Rb sin2 f0Þ�Rb siny sinyi sinf0;

ð12Þ

where yi is the incident angle, y is the scattering angle,
f0 is the angle between the scattering plane and a
polarization vector b

*

1 as shown in Fig. 1. Ra and Rb are the
Fresnel reflection coefficients corresponding to the
parallel and perpendicular components of the electric
vector with respect to the incident plane. Note that ~S

r
and

~S
d

are related to the normal direction of the planar
surface, and D is a shape factor determined by the
boundary shape and size of the local planar surface. The
obvious optics information contained in the shape factor
in Eq. (3) is that D tends to be largest when the
observational direction is aligned with the reflected ray
or the incident direction, which is partly responsible for
the peaks associated with diffraction and external
reflection in the phase function. The shape factor for
hexagonal particles was reported in a previous study [26].
For arbitrarily shaped local planar surface, the algorithm
for calculating the shape factor is discussed in Appendix A.
The illuminated side of the particle is usually composed of
N local planar surfaces. The amplitude scattering matrix is
given as follows:

S¼
XN

i ¼ 1

Dið
~S

d

i þ
~S

r

i Þ; ð13Þ

where Di, ~S
d

i , and ~S
r

i corresponds to D, ~S
d
, and ~S

r
at the ith

surface.
The formula (13) is not exact due to the approximation

of the reflected field near the edges of the planar surfaces.
It is expected that the inaccuracy of the reflected field
near the edge tends to be small when the size of
the particle is large, as ray optics is accurate when the
dimension of the particle face is much larger than the
incident wavelength. The accuracy of this approxima-
tion to the solution in the far field will be discussed in
Section 3.
l coordinate system ðb̂1; â1; ê iÞ of the incident ray is rotated to ðb̂1; â1 ; ê iÞ

electric-magnetic field vectors parallel and perpendicular to the incident

, and f0 is the angle between b̂1 and the scattering plane.
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The diffraction calculation is generally not exactly
the same as that from Babinet’s principle [1] stating that
the distribution of diffracted intensity by a 3-D solid
particle is identical to that by an aperture with the same
shape and size of the particle’s geometric projection. In
the context of the Kirchhoff surface integral, diffraction
comes from the integration of incident field on the
illuminated side of the particle or minus incident field
on the un-illuminated side. Note that the integration of
incident fields over a closed surface is zero. It is found that
the integration of the incident field in terms of the
illuminated side differs from the integration of minus
the incident field in terms of the projection except for
some special cases. As an example, we investigate the
diffraction by a regular hexahedron. Let the direction of
the incident wave be perpendicular to one of the faces. In
this case, the amplitude scattering matrices associated
with the bottom, the top and the geometric projection are
different by a phase factor (referred to Appendix B).
Therefore, the elements of the phase matrix are exactly
the same as expected from Babinet’s principle. For other
orientations of the regular hexahedron, phase matrix
elements from the SIM and Babinet’s principle are
different. Similarly, the SIM and Babinet’s principle give
the same result of phase matrix for spheres, but different
results for ellipsoids because the boundary that separates
the illuminated side and un-illuminated side is not
perpendicular to the incident direction except for some
special cases when the incident directions aligned with
the three principle axes. In a general case, inconsistency
exists between Babinet’s principle and the present
formulation of diffraction when the differences of ampli-
tude scattering matrices derived from the two methods
cannot be accounted for by a phase factor. Fig. 2 shows the
comparison of the distribution of diffracted intensity by a
cube computed from the present method and that from
Babinet’s principle. As shown in Fig. 2, the difference
between results from the two methods is very small near
the forward scattering direction. Note that the two
Fig. 2. Distribution of diffracted intensity for cubes computed from the presen

(integration over the particle projection). The results are averaged over scatter
methods yield the same results in the exact forward
direction.

2.2. Volume integral method

The far field can be formulated as a volume integral
over the internal field within the particle [10,40]:

E
*s

ð r
*
Þjkr-1 ¼

k2 expðikrÞ

4pr

Z
ðm2�1Þ E

*

ð r
*
0Þ�r̂ r̂ � E

*

ð r
*
0Þ

� �� �

�expð�ikr̂ � r
*
0Þd3 r

*
0; ð14Þ

where m is the refractive index. The amplitude scattering
matrix associated with the diffraction and external
reflection implied in this equation has been reported in
Yang et al. [26] and formulated in terms of a product of
the matrices associated with several coordinate system
transformations. The explicit elements of the amplitude
scattering matrix were obtained in this study as follows:

S11 S12

S21 S22

" #
¼
XN

i ¼ 1

Di
ðm2�1Þcosyt

Nrþ iNi�r̂ � êt

~S11
~S12

~S21
~S22

" #
; ð15Þ

where Nrþ iNi is the effective complex refractive index
[26], yt is the angle of refraction (different for each local
planar surface), and êt is the propagation direction of the
first-order refracted wave. Four elements of the matrix ~S
are in the form,

~S11 ¼ ½Ta cosðyi�ytÞsin2 f0þTb cos2 f0�Tg sinðyi�ytÞsin2 f0�cosy

�½Ta sinðyi�ytÞþTg cosðyi�ytÞ�siny sinf0; ð16Þ

~S12 ¼ ½�Ta cosðyi�ytÞþTbþTg sinðyi�ytÞ�cosy cosf0 sinf0

�½Ta sinðyi�ytÞþTg cosðyi�ytÞ�siny cosf0; ð17Þ

~S21 ¼ ½�Ta cosðyi�ytÞþTbþTg sinðyi�ytÞ�cosf0 sinf0;

ð18Þ

~S22 ¼ Ta cosðyi�ytÞcos2 f0þTb sin2 f0�Tg sinðyi�ytÞcos2 f0;

ð19Þ
t SIM method (integration over illuminated side) and Babinet’s principle

ing azimuthal angles.
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where yi is the angle of incidence; Ta, Tb, and Tg are three
transmission coefficients [26], given by

Ta ¼
2ðNrþ iNiÞcosyi

m2 cosyiþ½Nr cosytþ iNi=cosyt�
; ð20Þ

Tb ¼
2 cosyi

cosyiþ½Nr cosytþ iNi=cosyt�
; ð21Þ

Tg ¼
i2Ni tanyt cosyi

m2 cosyiþ½Nr cosytþ iNi=cosyt�
: ð22Þ

The formulation of the three transmission coefficients,
taking into account the effect of inhomogeneous waves
for absorptive particles, has been reported by Yang et al.
[26].

Eqs. (1) and (14) are equivalent when the near field is
exactly known. However, the amplitude scattering ma-
trices associated with the diffraction and the external
reflection derived are not exactly equivalent. Of interest is
that the diffraction and the external reflection are
inherently combined in Eq. (15). A comparison of
numerical results from the SIM and the VIM will be given
in Section 3.

2.3. Shadow diffraction and reflection from ray optics

The DPR method is only applicable to randomly
oriented particles due to singularity points existing in
the phase function. In the DPR method, the amplitude
scattering matrix associated with diffraction is repre-
sented in terms of an integral over either the projection or
the illuminated side of the particle. The reflection is
calculated through geometric optics based on the
ray-tracing technique. The energy associated with diffrac-
tion is assumed to be one half of the extinction cross
section. The final phase matrix is given by

P¼wdPdþwrP
r ; ð23Þ

where Pd and Pr are normalized phase matrices associated
with diffraction and external reflection, respectively.
wd and wr in (23) are relative weights, given by

wd ¼ se=ðseþ2srÞ; ð24Þ

wr ¼ 2sr=ðseþ2srÞ; ð25Þ

where sr and se are the cross sections associated with the
reflection and extinction calculated from the ray-tracing
technique. Pd is calculated from the Fraunhofer diffraction
theory as follows:

Pd ¼

jSd
11j

2þjSd
22j

2 jSd
22j

2�jSd
11j

2 0 0

jSd
22j

2�jSd
11j

2 jSd
11j

2þjSd
22j

2 0 0

0 0 2ReðSd�

11Sd
22Þ 2ImðSd

11Sd�

22Þ

0 0 �2ImðSd
11Sd�

22Þ 2ReðSd�

11Sd
22Þ

666666664

777777775;

ð26Þ

where the two diagonal elements of the amplitude
scattering matrix are given by [11]

Sd
11 ¼Dð1þcosyÞcosy; ð27Þ

Sd
22 ¼Dð1þcosyÞ: ð28Þ
Pr is related to the Fresnel reflection coefficients, given by

Pr ¼

RaR�aþRbR�b RaR�a�RbR�b 0 0

RaR�a�RbR�b RaR�aþRbR�b 0 0

0 0 2ReðRaR�bÞ 2ImðRaR�bÞ

0 0 �2ImðRaR�bÞ 2ReðRaR�bÞ

2
666664

3
777775

�

1 0 0 0

0 cosðf0�fÞ sinðf0�fÞ 0

0 �sinðf0�fÞ cosðf0�fÞ 0

0 0 0 1

2
6664

3
7775: ð29Þ

Note that for large randomly oriented convex particles,
the reflection pattern is the same as that for spheres with
the same surface area and refractive index, as articulated
by van de Hulst [1]. Therefore, it is not necessary to
compute the reflection pattern by using the ray-tracing
technique, but the reflection pattern can be computed
with the analytical solution for spheres [26], given by

Pr
11ðyÞ ¼ c Ra

p�y
2

� �����
����
2

þ Rb
p�y

2

� �����
����
2

; ð30Þ

where c is normalization constant, and || indicates the
modulus of a complex quantity.

3. Results and discussion

In this section, we present the optical properties of
hexagonal particles simulated from the SIM, the VIM and
the DPR methods, and estimate their applicability and
accuracy. For some selected simulations, a comparison
between the aforementioned approximate results and
those from the DDA method is presented. The ADDA code
used in this study was developed by Yurkin and Hoekstra
[34]. The refractive index is selected to be 1.3+i1.0 for the
present simulations. To minimize the contribution from
refracted waves, a proper selection of the imaginary part of
the refractive index depends on the size parameter.
The smaller the size parameter, the larger the imaginary
part of the refractive index required. A large imaginary part
of the refractive index can also increase the computational
efficiency of the DDA method. Therefore, in this study the
imaginary part of refractive index is selected to be 1.0. For
the ADDA simulations, number of dipoles per wavelength
is assumed to be 16.4 according to the rule of thumb [34]
and the required relative residual norm is specified as
1�10�5 for the involved bi-conjugate gradient solver.

The SIM and the VIM are applicable to particles with
fixed orientations. Figs. 3–5 compare the phase functions
of compact hexagonal particles (i.e., the aspect ratio is
unity) simulated from the SIM, the VIM and the DDA for
three representative orientations. For each orientation,
simulations were carried out at three size parameters: 20,
50 and 100 (i.e., small, moderate, and large values of the
size parameter) and phase function is averaged over
scattering planes. In Fig. 3, the direction of the incident
light is aligned with the axis of six-fold symmetry. A
continuous pattern is obtained from the SIM and the VIM.
As seen from the figure, the overall pattern of the phase
functions from the SIM and the VIM agree with those from
the ADDA. Large differences are found at scattering angles



Fig. 3. Phase functions for hexagonal particles. The direction of the incident light is aligned with the axis of six-fold symmetry. The refractive index is

1.3+i1.0. The lower panel shows the relative differences between the results from the SIM and the VIM and that from the ADDA. The results are averaged

over scattering azimuthal angles.

Fig. 4. Same as Fig. 3, except that the incident angle is 301. The 1201 peak is from the top reflection. The 51.31 peak is due to the contributions from two

sides. The results are averaged over scattering azimuthal angles.

L. Bi et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 163–173168



Fig. 5. Same as Fig. 3, except that the incident angle is 901. The illuminated side is composed of two local planar surfaces. The two scattering angles

predicted from ray optics are the same and equal to 1201. The results are averaged over scattering azimuthal angles.
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less than 1201. For backscattering angles, the agreement
between the methods is better.

In Fig. 4, the direction of the incident light makes an
angle of 301 with the axis of the particle and is parallel to
one of the mirror planes. Two sharp peaks are found when
the size parameter is 100. The 1201 peak is associated
with the reflection from the top surface while the 51.31
peak is from the reflections from two side faces. When the
size parameter decreases, the peaks broaden. At a size
parameter of 20, the 51.31 peak is essentially not notice-
able. This feature stems from the ray-spreading effect
[8,9]. When the incident light is parallel to the top surface,
as seen in Fig. 5, the peak arising from the top reflection
disappears and the peak location due to the reflection
from two side surfaces is at 1201. From the comparison of
the phase functions, the difference between the results
from the SIM/VIM and the DDA is pronounced when the
incident angle of the incoming light is zero. The phase
function values at scattering angles larger than 901 are
more accurate than those between 0 and 901. The SIM and
the VIM have comparable accuracy, although the formulae
are not exactly equivalent.

The difference between the results calculated from the
SIM/VIM and the DDA is due to the inaccuracy of the
reflected field near the edges. For simplicity, we demon-
strate the intensity of the electric field at the top face when
the incident angle is 01, as shown in Fig. 6. The upper and
lower panels correspond to the two polarization states of
the incident light. In principle, the applicability of ray
optics breaks down near the particle edge—the field near
the edge is quite different from that within the polygon. At
size parameters of 20 and 50, some structures in the
intensity pattern may be observed, but these structures
become less apparent as the size parameter increases. The
comparison shown in Fig. 5 suggests that the edge effect
may influence the forward scattering phase function.

Fig. 7(a) shows the comparison of the normalized
reflection pattern of randomly oriented hexagonal particles
from the ray tracing calculation with the reflection pattern
for a sphere with the same refractive index. The general
pattern of the external reflection from the ray-tracing
technique agrees with that for spheres. However, the ray
tracing technique is found to be inaccurate near the forward
and the backward directions. From this figure, we can see
that the reflection pattern for a sphere can be employed as a
proper surrogate for that associated with randomly oriented
hexagonal particles. Note that the normalized reflection
pattern does not depend on the size parameter of the
particle. As discussed in Section 2, the external reflection can
also be calculated from the SIM. As shown in Fig. 7(b), the
reflection pattern from the SIM depends on the size
parameter and is exactly zero in the forward scattering
direction. The physical reason for a missing reflection
pattern near the forward scattering angle is likely to be
associated with the inaccuracy of the reflected field near the
boundary of the particle. When the size of the particle is
large, the results from the SIM tend to match that of a
sphere except the forward scattering. Therefore, a zero
reflection in the forward scattering seems to be an artifact.
This artifact is not essential in the total phase function as the
diffraction dominates in near-forward scattering directions.

For the comparison of the phase function of randomly
oriented hexagonal particles from the SIM and the ADDA,
shown in Fig. 8(a), the number of orientations was set as



Fig. 6. Intensity of the total field of the first layer of dipoles near the hexagonal top. The direction of incident light is aligned with the axis. The two rows

are for different polarization directions of the incident electric field. The three columns correspond to different size parameters.

Fig. 7. (a) Comparison of normalized distributions of intensity associated with the external reflection from randomly oriented hexagonal particles

calculated from the ray-tracing technique and the analytical solution for spheres with the same refractive index as that of hexagonal particles.

(b) Reflection by randomly oriented hexagonal particles calculated from the SIM at three size parameters of 20, 50, and 100.

L. Bi et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 163–173170



Fig. 8. Comparison of the phase function from the SIM, the ADDA and the DPR for randomly oriented particles. The random orientations in (a) for the

ADDA and SIM are set through 17 zenith angles and 17 azimuthal angles. Random orientations in (b) for the SIM are specified through 170 zenith angles

and 30 azimuthal angles to produce flat backscattering.
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17�17 for the ADDA and SIM simulations. While a close
agreement between the SIM and the ADDA is demonstrated,
a structure in the backscattering phase function is observed.
From the properties of the reflection pattern for randomly
oriented particles, the phase function should be flat as
illustrated by the DPR method. This is because the number
of orientations is insufficient for representing the random
orientation condition. Since the ADDA requires more
computational time to perform numerical averages over a
large number of orientations, we increased the number of
orientations for the SIM due to its efficiency. As a result, a
flat backscattering feature appears, as shown in Fig. 8(b).
Results from the SIM tend to match that of the DPR method,
suggesting that the assumptions in the DPR method are
reasonable. Therefore, for randomly oriented particles, the
DPR method can be used as an efficient method for the first-
order scattering simulation without losing accuracy. Note
that the DPR is restricted to randomly oriented particles. For
particles with preferred orientations, the SIM/VIM should be
chosen. This comparison also indicates that the peak in the
phase function around 161, observed in the ADDA
calculation, is related to diffraction. For randomly oriented
particles with complex shapes, the normalized reflection
pattern is not the same as that of a sphere, and then the ray-
tracing technique can be used.
4. Summary and conclusions

External reflection and diffraction by hexagonal parti-
cles are studied by three approximate methods; the SIM,
the VIM and the DPR. The amplitude scattering matrix
derived from the SIM and the VIM are not exactly
equivalent; however, both have comparable accuracy in a
numerical simulation. Comparison of results from the SIM
and the VIM with those of the DDA method suggests that
the SIM and the VIM are very accurate even for particles
with fixed orientations. For randomly oriented hexagonal
particles, a flat backscattering feature is validated. The DDA
method is insufficient in this case because a large number
of random orientations are required that result in a
tremendous demand on computational resources. The
DPR has proven to be applicable to randomly oriented
particles with a reasonable accuracy. Because the diffrac-
tion and external reflection can be semi-analytically
obtained with a satisfactory accuracy, a standard algorithm
can be programmed in a straightforward way.
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Appendix A. The calculation of the shape factor D in
Eq. (4)

In the present study, the shape factor needs to be
calculated with respect to various facets on a particle surface.
For simplicity, let the position vector on a local planar face be

r
*
0 ¼ r

*
0þuêuþvêv; ð31Þ
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where r
*

0 is a given vector of a selected boundary point on
the surface, ðêu; êvÞ are two orthogonal unit vectors lying in
the surface. Let n̂ be along its normal direction. The unit
vectors êu; êv, and n̂ create a local coordinate system. In the
new coordinate system, the shape factor is written as

D¼
k2

4p exp ikðê
i
�r̂Þ � r

*
0

n oZ
s

exp ikðouuþovvÞ
	 


du dv;

ð32Þ

where ou and ov are two defined coefficients, given by

ou ¼ ðê
i
�r̂Þ � êu; ov ¼ ðê

i
�r̂Þ � êv: ð33Þ

By employing the Stokes theorem [41,42], the integral in Eq.
(32) is written as
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For a N-polygon, the integral can be integrated as [41],Z
s
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Substituting Eq. (35) into Eq. (32) and after some algebra, we
obtain
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i
�r̂Þ � ð r

*

iþ1� r
*

iÞ=2

�expfikðê
i
�r̂Þ � ð r

*

iþ1þ r
*

iÞ=2g: ð36Þ

Note that in Eq. (36) the sequence of vertices is in a
counterclockwise direction, r

*
Nþ1 ¼ r

*
1, and the normal

direction is facing the incident wave. Calculation of Eq. (36)
can be done in an arbitrary 3-D space.
Fig. 9. Schematic geometry of diffrac
Appendix B. Diffraction by a regular hexahedron

In a general formulation, the amplitude scattering matrix
associated with the diffraction by a 3-D facet is given by,

Sd
11 ¼�D½ð1þcosyÞêi � n̂þsiny sinfâ i

� n̂þsiny cosfb̂i � n̂�: ð37Þ

Sd
12 ¼Dðsiny cosfâ i � n̂�siny sinfb̂ i � n̂Þ; ð38Þ

Sd
21 ¼�Sd

12; Sd
22 ¼ Sd

11: ð39Þ

where n̂ is the outward normal direction of the facet, êi is
the direction of incident light, â i and b̂i are two polariza-
tion vectors, and y and f are the scattering angle and the
azimuthal angle of scattering plane. When the incident
light is normally impinging on the bottom of a regular
hexahedron, as shown in Fig. 9, it can be proved that
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tion by a regular hexahedron.
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where ox, oy, and oz are three components of vector o
*
¼

ðê
i
�r̂Þ/2. Note that Sd

top and Sd
bottom have a phase difference.

It can be shown that Sd
bottomþSd

leftþSd
rightþSd

frontþSd
back ¼�Sd

top.
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